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Abstract. Evolutionary Algorithms (EAs) were applied to multidisciplinary transonic wing 
design optimizations. Aerodynamic performances of the design candidates were evaluated by 
using the three-dimensional compressive Navier-Stokes equations to guarantee an accurate 
model of the flow field. The wing structure is modeled on a box-beam to estimate the wing 
thickness and wing weight. To overcome enormous computational time necessary for the 
optimization, the computation was parallelized on Numerical Wind Tunnel at NAL in Japan 
and NEC SX-4 computers at Computer Center of Tohoku University in Japan. First, a 
singleobjective wing design optimization was demonstrated by maximizing L/D with a 
structural constraint using a real-coded Adaptive Range Genetic Algorithm (ARGA). Because 
the structural constraint imposed a tradeoff between minimizations of the induced drag and 
the wave drag, the present ARGA found a compromised but reasonable design. Then, a 
multiobjective wing design optimization is performed by minimizing both drag and weight 
with a constraint on CL using a Multiobjective Evolutionary Algorithm (MOEA). Due to the 
tradeoff between minimization of aerodynamic drag and minimization of weight of wing 
structure, the solution to this problem is not a single point but a set of compromised designs. 
The present MOEA successfully captured these solutions that revealed the tradeoff 
information. These results showed that EAs were promising approach to multidisciplinary 
optimization problems. 
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1 INTRODUCTION 

The design of wings is a typical example of multidisciplinary and multiobjective design 
optimization problems. Although the objective of a transonic wing design optimization is, in 
principle, minimization of aerodynamic drag, there are considerable number of tradeoffs. One 
of the main tradeoffs lies between minimization of drag and minimization of structural weight 
of wing. An increase in the wing thickness allows the same bending moment to be carried with 
reduced skin thickness, resulting in reduction of weight. On the other hand, it will lead to an 
increase in wave drag. In addition, an elliptical spanwise load distribution that minimizes 
induced drag results in a large bending moment at the inboard of the wing with an 
accompanying increase in weight. The solution to this problem is, therefore, not a unique 
optimal solution, but a set of compromised solutions, largely known as the tradeoff surface or 
Pareto-optimal solutions. 

In general, the primary goal of multiobjective optimization problems (MOPs) is, unlike that 
of single objective optimizations, to find various Pareto-optimal solutions to show the precise 
tradeoff information among the completing objectives. Traditionally, solutions to MOPs are 
computed by the weighted-sum method that combines multiple objective functions into a scalar 
objective function. However, this method can find only one Pareto-optimal solution. In order 
to obtain various Pareto-optimal solutions, one has to optimize repeatedly with changing 
weights. This approach is inefficient and often fails to address tradeoffs. 

Evolutionary Algorithms 1  (EAs) are particularly suited for MOP optimizations. By 
maintaining a population of solutions, they can uniformly sample various Pareto-optimal 
solutions in parallel without specifying weights between objectives. In addition, EAs have 
other advantages such as robustness, efficiency, as well as suitableness for parallel computing. 
EAs developed for MOPs are called Multiobjective Evolutionary Algorithms1 (MOEAs). 

In this paper, Evolutionary Algorithms are applied to multidisciplinary optimization of a 
transonic wing for generic transport aircraft. First, the transonic wing is optimized with respect 
to its aerodynamic performances using a single objective EA. Structural constraint is 
introduced to maintain the minimum wing thickness required to stand the bending moment due 
to the lift. The design result will reveal the nature of the tradeoff in a wing design problem. 
Then, multiobjective optimization of a transonic wing will be demonstrated using MOEA to 
minimize both drag and weight. The Pareto-solutions will identify the tradeoff information. 

2 EVOLUTIONARY ALGORITHMS 

EAs are emergent optimization algorithms mimicking mechanism of the natural evolution, 
where a biological population evolves over generations to adapt to an environment by selection, 
recombination and mutation. When EAs are applied to optimization problems, fitness, 
individual and genes usually correspond to an objective function value, a design candidate, and 
design variables, respectively. One of the key features of EAs is that they search from multiple 
points in the design space, instead of moving from a single point like gradient-based methods 
do. Furthermore, these methods work on function evaluations alone and do not require 
derivatives or gradients of the objective function. These features lead to the following 
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advantages: 
1) Robustness: EAs have capability of finding a global optimum, because they don’t use 

function gradients that direct the search toward an exact local optimum. In addition, EAs have 
capability to handle any design problems that may involve non-differentiable objective function 
and/or a mix of continuous, discrete, and integer design parameters. 

2) Suitability to parallel computing: Since EAs are population-based search algorithms, all 
design candidates in each generation can be evaluated in parallel by using the simple master-
slave concept. Parallel efficiency is also very high, if objective function evaluations consume 
most of CPU time. Aerodynamic optimization using Computational Fluid Dynamics (CFD) is a 
typical case. 

3) Simplicity in coupling CFD codes: As these methods use only objective function values 
of design candidates, EAs do not need substantial modification or sophisticated interface to the 
CFD code. If an all-out re-coding were required to every optimization problem, like the adjoint 
methods, extensive validation of the new code would be necessary every time. EAs can save 
such troubles. 

Application of EAs to multiobjective design problems is also straightforward because EAs 
maintain a population of design candidates in parallel. This characteristic makes EA very 
attractive for solving MOPs. EAs developed for multiobjective optimization problems are 
called Multiobjective Evolutionary Algorithms (MOEAs). To solve MOPs successfully, the 
following two features are desired: 1) The solutions obtained are Pareto-optimal. 2) They are 
uniformly sampled from the Pareto-optimal set. To achieve these with EA, Pareto-based 
ranking method and fitness sharing technique are often used2.  

Owing to the above advantages over the analytical methods, EAs have become increasingly 
popular in a broad class of design problems1. EAs have been also successfully applied to 
aeronautical design problems including conceptual and preliminary design of aircraft 3 , 4 , 
aerodynamic wing designs5,6,7 and preliminary design of turbines8. 

3 SINGLEOBJECTIVE WING DESIGN OPTIMIZATION 

3.1 Formulation of design problem 

The objective of the present wing design problem is maximization of the lift-to-drag ratio 
L/D at the transonic cruise design point, maintaining the minimum wing thickness required to 
stand the bending moment due to the lift distribution. The cruising Mach number and the angle 
of attack are set to 0.8 and 0 degree, respectively. 

The planform of the supercritical wing in the NASA Energy Efficient Transport (EET) 
Program9 was selected as the test configuration for the following design cases (Fig.1). Wing 
profiles of design candidates are parameterized by the PARSEC airfoils10. A remarkable point 
is that this technique has been developed aiming to control important aerodynamic features 
effectively by selecting the design parameters based on the knowledge of transonic flows 
around an airfoil. It was reported that the PARSEC is the most efficient airfoil shape 
parameterization technique among typical parameterization techniques for aerodynamic 
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optimization11. 
 

 
Figure 1: Wing planform 

 
Similar to 4-digit NACA series airfoils, The PARSEC parameterizes upper and lower airfoil 

surfaces using polynomials in coordinates X, Z as, 

∑
=

−⋅=
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n
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where an are real coefficients. Instead of taking these coefficients as design parameters, the 
PARSEC airfoils are defined by basic geometric parameters: leading-edge radius, upper and 
lower crest location including curvatures, trailing-edge ordinate, thickness, direction and 
wedge angle as shown in Fig. 2. These parameters can be expressed by the original coefficients 
an by solving simple simultaneous equations. Eleven design parameters are required for the 
PARSEC airfoils to define an airfoil shape in total. In this paper, ten design variables are used 
to give an airfoil shape with zero trailing-edge thickness. 

The PARSEC parameters and the section angle of attack (in other words, root incident 
angle and twist angle) are given at seven span sections, of which spanwise locations are also 
treated as design variables except for the wing root and tip locations. The PARSEC parameters 
are rearranged from root to tip according to the airfoil thickness so that the resulting wings 
always have maximum thickness at the wing root. The twist angle parameter is also rearranged 
into numerical order from tip to root. The wing surface is then interpolated in spanwise 
direction by using the second-order Spline interpolation (Fig. 3). In total, 87 parameters 
determine a wing geometry. 
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Figure 2: Design parameters for the PARSEC 
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Figure 3: Spline interpolation 

 

3.2 Aerodynamic analysis 

The flow physics can be represented by a wide range of approximations. Among them, the 
Reynolds-averaged Navier-Stokes equations provide the state-of-aft of aerodynamic 
performance evaluation. Although a Navier-Stokes calculation requires large computer 
resources to estimate wing performances within a reasonable time, the three-dimensional 
Navier-Stokes equations must be solved because flows around a wing involve significant 
viscous effects, such as potential boundary-layer separations and shock wave/boundary layer 
interactions in the transonic regime. In this paper, a three-dimensional thin-layer Reynolds-
averaged Navier-Stokes solver will be used to guarantee an accurate model of the flow field to 
demonstrate the feasibility of EA methodology. This code employs total variation diminishing 
type upwind differencing 12 , the lower-upper symmetric Gauss-Seidel scheme 13 , and the 
multigrid method14. 
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3.3 Estimation of required thickness 

To estimate the minimum thickness distribution to stand the bending moment due to the 
spanwise lift distribution, the wing structure is modeled by a thin walled box-beam as shown in 
Fig. 4. The skin panels of the box-beam are considered to shear the bending moment. From the 
load L, the spanwise bending moment distribution M is calculated by 

L
dy

Md −=
2

2

 
(2) 

For the brevity, the lift distribution is replaced by spanwise concentrated loads. The bending 
stress at each station is given by 

2
1t

I
M=σ  

(3) 

where the second moment of area I is calculated as  
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The constraint is then given by the local stress to be less than the ultimate shear stress of, say, 
Aluminum alloy 2024-T351. 

ultimateσσ <  (5) 

Using Eqs. (3) to (5), we obtain the minimum thickness tmin  at each segment, 

min
2

t
tc

M
t

ultimate

=
⋅⋅

>
σ  

(6) 

Following assumptions are made: the thickness of the skin panels is 2.5[cm] and its ultimate 
normal stress is 2.74x107[kgf/m2]. The length of the chord at wing root Croot  and maximum 
wingspan b/2 are 10[m] and 18.8[m], respectively. 
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c
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Figure 4: Box-beam modeling 
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3.4 Optimization 

In this paper, real-coded Adaptive Range Genetic Algorithm (ARGA) 15 was used for the 
present singleobjective wing design optimization. The ARGA can solve large-scale design 
optimization problems very efficiently by promoting the population toward promising design 
regions during the optimization process. 

The present EA adopts the elitist strategy16 where the best and the second best individuals 
in each generation are transferred into the next generation without any recombination or 
mutation. The parental selection consists of the stochastic universal sampling17 and the ranking 
method using Michalewicz’s nonlinear function18. Blended crossover19 (BLX-0.5) is used for 
recombination. Mutation takes place at a probability of 10% and then adds a random 
disturbance to the corresponding gene up to 10% of the given range of each design parameter. 
The population size is kept at 64 and the maximum number of generations is set to 65. The 
initial population is generated randomly over the entire design space. 

The main concern related to the use of EAs coupled with three-dimensional Navier-Stokes 
solvers for aerodynamic shape designs is the required computational effort. In the present case, 
each CFD evaluation takes about 100 min. of CPU time even on a vector computer. Because 
the present optimization evaluates 64 x 65 = 4160 design candidates, sequential evolutions 
would take almost 7000 h (more than half a year!). 

Fortunately, parallel vector computers are now available in many institutions and 
universities. In addition, EAs are intrinsically parallel algorithms and can be easily parallelized. 
One of such computers is Numerical Wind Tunnel (NWT) 20 located at National Aerospace 
Laboratory in Japan. NWT is a MIMD parallel computer with 166 vector-processing elements 
(PEs) and its total peak performance and the total main memory capacity are about 280 
GFLOPS and 45GB, respectively. In the present optimization, evaluation process at each 
generation was parallelized using the master-slave concept; the grid generations and the flow 
calculations associated to the individuals of a generation were distributed into 64 PEs of NWT. 
This made the corresponding turnaround time almost 1/64 because the CPU time used for EA 
operators are negligible. 

To handle the structural constraint with the single-objective EA, the constrained 
optimization problem was transformed into an unconstrained problem as 

fitness




−⋅+
+

=
)exp()/100(

/100

minttDL

DL
function  

otherwise

if mintt ≥
 

(7) 

where t and tmin are thickness and minimum thickness at the span station of the maximum local 
stress. The exponential term penalizes the infeasible solutions by reducing the fitness function 
value. Because some design candidates can have negative L/D, the summation of 100 and L/D 
is used. 
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3.5 Results 

The optimization history of the present EA is shown in Fig. 5 in terms of L/D. During the 
initial phase of the optimization, some members had a strong shock wave or failed to satisfy 
the structural constraint. However they were weeded out from the population because of the 
resultant penalties to the fitness function. The final design has L/D of 18.91 satisfying the given 
structural constraint. Aerodynamic performances of the design are summarized in Table 1. 
Compared with a typical long-range transport aircraft, the present wing has smaller lift 
coefficient CL. Although L/D is an important aircraft performance measure because the range 
of an aircraft depends on it, wing optimizations by maximizing L/D may result in a design that 
has too lower lift to fly. Therefore, another constraint on lift or multiobjective approach is 
required for a wing design optimization. 
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Figure 5: Optimization history of L/D 

 
Table 1: Aerodynamic performances of the design 

CL 0.26213 
CD 0.01386 
L/D 18.9143 

 
The wing thickness distribution of the design is given in Fig. 6. The minimum thickness 

constraint appears at the kink because the inboard sections of the wing have large chord 
lengths and allow a large moment. The design satisfies this structural constraint while 
minimizing its thickness distribution to reduce the wave drag. 
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Figure 6: Spanwise thickness distribution 

 
Figure 7 compares the span load distribution of the designed wing with a parabola that is 

known to give the minimum induced drag when the structural constraint is considered. The 
design does not have the parabolic span load distribution but a straight load distribution, which 
helps to reduce the bending moment at the inboard of the wing. The thickness distribution for 
the corresponding parabolic span load distribution is presented in Fig. 8. This figure indicates 
that a design that minimizes the induced drag would have 18% thickness-to-chord. Such design 
would result in an unacceptably large wave drag associated with a stronger shock wave. The 
present structural constraint imposed a tradeoff between minimizations of induced drag and 
wave drag. The present straight span load distribution is a compromised design. 
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Figure 7: Spanwise lift distribution 
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Figure 8: Comparison of thickness distributions between the present design 

and the minimum induced-drag design 
 

The spanwise twist angle distribution and its control points are illustrated in Fig. 9. The 
angle of attack drastically decreases at the kink. Because the inboard of the wing has large 
chord length it allows large bending moment and thus large twist angle. On the other hand, 
since the outboard has smaller chord length, the wing requires significant twisting down 
outside the kink to reduce the moment. 
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Figure 9: Spanwise twist angle distribution 

 
The designed airfoil sections and the corresponding pressure distributions at the 0, 33, and 

66% spanwise locations are shown in Fig. 10. Neither any strong shock wave nor any flow 
separation are found that may significantly increase pressure drag. This ensures the ability of 



Akira Oyama 

11 

the EA-based optimization in wing designs. 
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Figure 10: Designed airfoil sections and the corresponding pressure distributions 

4 MULTIOBJECTIVE WING DESIGN OPTIMIZAITON 

4.1 Formulation of design problem 

The objective of the next design problem is multiobjective optimization of a transonic wing 
design, i.e., minimizations of both drag and weight with the constraint CL=0.5. These 
objectives are competing and therefore the solution to this optimization problem is a set of 
compromised designs. MOEAs have capability to find those solutions in parallel. Flow 
conditions are same as the design in the previous section. 

Constraints are usually enforced by a penalty function as the previous design case. However, 
such a penalty may reduce feasible design space. Therefore, the lift constraint is satisfied by 
changing the geometric angle of attack at wing root αroot so that CL becomes 0.5 based on the 
lift coefficient varying linearly: 
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where α1 and α2 are set to 3 and 6 degrees, respectively. This approach requires two extra 
flow evaluations. 

Same Planform shape as the previous optimization with root chord of 12 [m] is used for this 
design. Wing profiles of design candidates are parameterized by the PARSEC airfoils. The 
PARSEC parameters and the section angle of attack are given at four span sections. The twist 
angle parameter is rearranged into numerical order from tip to root. The wing surface is 
interpolated in spanwise direction by using the second-order Spline interpolation. In total, 43 
parameters determine a wing shape. 

4.2 Aerodynamic analysis 

Same CFD code described in subsection 3.2 is used. 

4.3 Weight estimation 

To estimate wing weight, a wing structure is modeled by box-beam structure consisting of 
upper/lower skin panels and front/rear spars as shown in Fig. 11. The skin panels shear the 
bending moment due to lift. By allowing 0.3% tensile, allowable minimum skin panel thickness 
is given by Eqs. (3),(4) as 

11
2

tcE

M
SC

tc

M
SCt

allowedallowed ⋅⋅⋅
=

⋅⋅
=

εσ  
(10) 

where Young’s modulus E=7.523 x109 [kg/ms2] and εallowed =0.003. Safety factor SC=1.5 is 
imposed. Once t2 is obtained, the skin panel weight at each spanwise station is given by 

ctWskin ⋅⋅⋅= 22 ρ  (11) 

where density of Aluminum alloy 2024-T351 ρ=2.742 x107 [kg/ms2].  
Thickness of the front/rear spars is calculated by assuming the lift equals to the spar applied 

shearing stress τ at each spanwise station as 

312 ttL ⋅⋅⋅= τ  (12) 

Allowing 0.3% shearing strain, thickness of the front/rear spars t3 is obtained as 

11
3 22 tG

L
SC

t

L
SCt

allowedallowed ⋅⋅⋅
=

⋅⋅
=

γτ  
(13) 

where modulus of transverse elasticity G=2.812x109[kg/ms2] and γallowed =0.003. Safety factor 
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SC=1.5 is imposed. The spar weight at each spanwise station is then given by 

132 ttWspar ⋅⋅⋅= ρ  (14) 

The total wing weight is finally calculated by summing skin panel and spar weight at all 
spanwise stations. 
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REAR SPARFRONT SPAR

t3

 
Figure 11 Box-beam modeling for weight estimation 

4.4 Optimization 

To find Pareto-optimal solutions, a real-coded MOEA is used. The present MOEA uses 
random parental selection and BLX-0.5. As the elitism, the best-N selection21 is incorporated, 
where the best N individuals are selected for the next generation among N parents and N 
children based on Pareto-optimality2 so that Pareto solutions will be kept once they are formed. 
A standard fitness sharing function22 is used to maintain the diversity of the population. Since 
the strong elitism is used, high mutation rate of 0.2 is applied and a random disturbance is 
added to the parameter in the amount up tor20% of the design space. Population size and 
maximum number of generations are set to 32 and 30, respectively. Unbiased initial population 
is generated by randomly spreading solutions over the entire design space in consideration. 
Evaluation is parallelized on NEC SX-4 computers at Computer Center of Tohoku University, 
using 32 PE’s (this corresponds to one node of SX-4, a quarter of the center machine, and the 
node’s peak performance is 64 GFLOPS with 8 GB memory). 

4.5 Results 

Pareto solutions obtained by the present optimization are shown in Fig. 12 with red points. 
The present MOEA successfully displayed the tradeoff information between minimization of 
drag and weight. Such tradeoff information is very helpful to a higher-level decision-maker in 
selecting a design with other considerations. In Ref [23], there is a description of the 
aerodynamic performance of B747, which is also plotted by a blue point though the planform 
shape is different to some extent. It is close to the tradeoff surface. 

Figure 13 compares spanwise thickness distributions of the minimum drag design, the 
minimum weight design and a compromised design that has same CD as B747. The minimum 
drag design minimizes the wave drag by reducing its wing thickness but on the contrary, 
requires the large structural weight. The minimum weight design has a very thick wing to 
reduce its weight but it leads to the large wave drag. The compromised design has a reasonable 
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spanwise wing thickness distribution. 
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Figure 12 Pareto-optimal solutions in the objective function space 
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Figure 13 Comparison of spanwise thickness distributions 

 
Figure 14 compares spanwise load distributions. As expected in the aerodynamic theory, the 

minimum drag design achieves the elliptical spanwise load distribution, which requires a heavy 
structure due to the large lift at the outboard of the wing. The minimum weight design, on the 
other hand, decreases lift at the outboard of the wing to reduce its moment, which, on the 
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contrary, results in a substantial increase in induced drag. The compromised design has straight 
spanwise load distribution similar to the design obtained by the singleobjective optimization. 
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Figure 14 Comparison of spanwise load distributions 

5 CONCLUSION 

EAs were applied to singleobjective and multiobjective multidisciplinary wing optimizations. 
Aerodynamic performances of the design candidates were evaluated by using the three-
dimensional compressive Navier-Stokes equations to guarantee an accurate model of the flow 
field. The required wing thickness and wing weight are estimated by modeling the wing 
structure on a box-beam. To overcome enormous computational time necessary for the 
optimization, the computation was parallelized on NWT and SX-4. 

First, a single objective wing design optimization was demonstrated by maximizing L/D 
with a structural constraint using a real-coded ARGA. The designed wing has a good L/D 
value satisfying the given structural constraint on wing thickness. Because the structural 
constraint imposed a tradeoff between minimizations of the induced drag and the wave drag, 
the design did not have the minimum wave drag or the minimum induced drag. The straight 
span load distribution of the design was a compromise of this tradeoff. 

Next, a multiobjective wing design optimization was performed by minimizing both drag 
and weight with a constraint on CL using a MOEA. Due to the tradeoff between minimization 
of aerodynamic drag and minimization of weight of wing structure, solutions to this problem 
become Pareto optimal. MOEAs are unique and attractive methods since MOEA finds many 
Pareto-optimal solutions in parallel. The present MOEA successfully captured these solutions 
that revealed the tradeoff information. These results show that EAs are promising approach to 
multidisciplinary optimization problems. 
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