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Abstract
Evolutionary Algorithms (EAs) based on structured coding have been proposed for aerodynamic
optimization of wing design. Fractional factorial design is used to investigate interactions of the design
variables to determine the appropriate coding structure for EAs in advance. The present EAs is applied to
wing design problems where the wing shape is modeled using the parameter set for the extended Joukowski
airfoils and the PERSEC airfoils. Aerodynamic optimizations of a transonic wing demonstrated that the
structured coding for EAs is a promising approach to find a global optimum in real-world applications. The
design results also confirm that the PERSEC is an efficient approach for transonic wing shape
parameterization.

1. Introduction
Evolutionary Algorithms (EAs, for example, see [1]) are emergent numerical optimization algorithms
modeled on mechanism of natural evolution by selection. One of the key features of EAs is that they search
from multiple points, instead of moving from a single point unlike gradient-based methods. In addition, they
require no derivatives or gradients of the objective function. These features lead to remarkable robustness in
optimization and simplicity in coupling CFD codes together. Furthermore parallel efficiency will be
extremely high by using a simple master-slave concept for function evaluations, if such evaluations consume
most of CPU time. An examples is aerodynamic shape design optimization using CFD.

Thanks to these features, EAs are gaining popularity in various engineering fields (see [2], for example).
As for aerodynamic designs, EAs have been applied to aerodynamic designs of two-dimensional shapes such
as airfoils and turbine blades [3-5]. Even a three-dimensional wing design has been demonstrated in [6] by
simplifying the geometry definition according to subsonic aerodynamics.

Application of EAs to practical aerodynamic optimization, however, may not be straightforward. Since
such optimization problems usually require a large number of design parameters involving complex
interactions each other, standard EAs would fail to find a globally optimum. Transonic wing design might be
a typical case.

When EAs are used to solve an engineering optimization problem, complexity in the objective function
distribution appears as interactions among design parameters. They are often referred as “epistases”,
corresponding to the term used in biology. Therefore, if the epistases of the design parameters are identified
in advance, a smoother landscape of the objective function distribution can be reproduced by rearranging
encoding of the design parameters. However, an exhaustive search of epistases using such as full factorial
design would require as many CFD analysis's as those required for EAs itself.

In [7], EAs using structured coding have been proposed and applied to a transonic wing shape design,
where Fractional Factorial Design (FFD, [8]) was used to examine the epistasis of the design parameters.
FFD is a statistical tool developed to gain needed information at the least expenditure of resources from a
structured set of coherent tests. In the reference, although the structured coding improved the design
performance, wing profiles were parameterized by the extended Joukowski transformation [9], which lately
proven to be inadequate for precise geometry definitions, especially for transonic airfoil [10].



 The objective of the present study is to apply an EA based on the structured coding to a three-dimensional
wing shape design using a more precise airfoil parameterization technique. In this study, a sophisticated
airfoil parameterization technique called “PERSEC” [11] will be used. The key concept of the PERSEC is
that the choice of design parameters should be based on the flow structure around an airfoil to control the
important aerodynamic features effectively. By applying the present EA to the wing shape design using the
PERSEC, an efficient and robust EA-based transonic wing shape optimization tool will be developed.
 In the present paper, first, application of the present EA to the aerodynamic wing shape design
parameterized by the extended Joukowski transformation will be presented. Then the present EA will be
applied to the same wing design problem where the wing shape is parameterized by the PERSEC. Finally,
the results will be compared and discussed.

2. Approach
2.1 Geometry Modeling
The wing planform is taken from a typical transonic aircraft as Ref. 5. Wing profiles are parameterized by
the extended Joukowski transformation or the PERSEC. Thus, an wing shape is defined by parameters for
these airfoil shape parameterization techniques and twist angle α  given at five spanwise sections. The wing
surface is linearly interpolated between the specified spanwise sections. In the following subsections, airfoil
parameterization techniques are described.

The extended Joukowski transformation
The extended Joukowski transformation [9] can express various kinds of airfoils with small number of
parameters by transforming a circle to an airfoil shape in the complex number plane with two consecutive
conformal mappings as,
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where ε and ∆ are a complex parameter and a real parameter, respectively. Equation (2) is well known as
the Joukowski transformation. And eq. (1) is a preliminary transformation before the Joukowski
transformation. The airfoil shape is defined by 5 parameters: center of the circle Zc, real part and imaginary
part of ε, and ∆. An example of the extended Joukowski transformation is illustrated in Fig. 1. Instead of the
raw parameters (Zc, ε, ∆), the present design parameters are given by (xc, yc, xt, yt, ∆) where the center of the
circle Zc and the complex number ε correspond to the position (xc, yc) and (xt, yt), respectively. It is known
that xc and xt are related to the airfoil thickness while yc and yt are related to the airfoil camber.
The PERSEC airfoils
Recently, an airfoil family “PARSEC” has been proposed to parameterize an airfoil shape [11]. Similar to 4-
digit NACA series airfoils, the PERSEC parameterizes upper and lower airfoil surfaces using polynomials in
coordinates X, Z as,
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where na are real coefficients. Instead of taking these coefficients as design parameters, the PERSEC airfoils
are defined by basic geometric parameters: leading-edge radius, upper and lower crest location including
curvatures, trailing-edge ordinate, thickness, direction and wedge angle as shown in Fig. 2. These parameters
can be expressed by the original coefficients na by solving simple simultaneous equations. Eleven design
parameters are required for the PERSEC airfoils to define an airfoil shape in total.

The key concept of this parameterization is to keep number of the needed parameters as low as possible
while controlling the important aerodynamic features effectively by selecting the design parameters based on
the knowledge of transonic flows around the airfoil. Aerodynamic airfoil designs using EAs in [10] have
proven that EA using the PERSEC succeeded in finding the best design among EAs using several airfoil
parameterization techniques including a widely-used B-Spline curves.

2.2 Multiobjective Evolutionary Algorithms (MOEAs)
Most engineering problems require the simultaneous optimization of multiple, often competing criteria.



Such problems are called multiobjective or multicriteria problems. Unlike single objective optimization, the
solution to this sort of problems is not a single point, but a family of points known as the Pareto-optimal set.
Since EAs maintain a population of design candidates in parallel, application to multiobjective design
problems is straightforward. EAs developed for multiobjective optimization problems are called
Multiobjective Evolutionary Algorithms (MOEAs).

Generally, EAs consist of fitness evaluation of individuals, selection according to the fitness, crossover
and mutation of mating pair's genes as illustrated in Fig. 3. When EAs are applied to engineering problems,
an individual, fitness and genes correspond to an design candidate, objective function value(s) and design
variables, respectively. In this study, the design variables are coded as real number strings since it is natural
to use real numbers for optimization problems involving real parameters. Pareto-ranking method and fitness
sharing [12] are combined into the present EA to obtain Pareto-optimal set in parallel. The best-N selection
[13] is also incorporated, where the best N individuals are selected for the next generation among N parents
and N children so that Pareto solutions will be kept once they are formed. Since the strong elitism is used,
high mutation rate of 0.2 is applied and a random disturbance is added to the parameter in the amount up
to 20% of the design space. Although several crossover techniques have been proposed, one-point
crossover is applied to utilize the structured coding. The initial population is randomly created. Population
size and maximum number of generations are set to 128 and 300, respectively. In total, present optimization
requires 19264 CFD runs.

2.3 Fractional Factorial Design
A parametric study is often conducted by varying one parameter at a time or by trial and error for a limited
number of parameters. However, such approaches only lead to incomplete knowledge for a large design
space. An exhaustive search, in contrast, requires unacceptably large number of experiments and thus they
are not suitable to real-world problems. For instance, a full factorial design of a design space of 10
parameters with 3 levels would require 310 = 59049 experiments.

FFD, same times called experimental design, is a statistical approach that has been developed to gain
needed information at the least expenditure of resources from a structured set of coherent tests. It reduces the
required number of experiments by arranging the experiments according to the orthogonal array and
estimating the effectiveness of the factors and their interactions by F-tests. These days, FFD is often used for
screening experiment of the response surface method.

3. Results
Aerodynamic optimization of wing designs is demonstrated. The cruising Mach number is assumed to be
0.8. Airfoil thickness is constrained so that the maximum thickness is greater than 0.08 of the chord length.
MOEAs search tradeoff solutions between maximization of CL and minimization of CD within one
optimization. Aerodynamic performances are evaluated by the FLO-27 code, which is a conservative full-
potential code developed by Jameson and Caughey [14]. The numbers of the required design parameters are
30 for the wing parameterized by the extended Joukowski transformation and 55 for the wing parameterized
by the PERSEC.

3.1 Wing Design Using the extended Joukowski transformation
Prior to the design optimization, FFD is applied to analyze the epistases, i.e., the interactions of the design
variables. Analysis of interactions of all design variables for the wing model, however, requires
unacceptably large number of CFD runs even with the FFD. Therefore, the design variables are grouped into
spanwise variations of the airfoil shape parameters and the twist angle. Factors examined are these spanwise
distributions and their two-factor interactions except for those related to the twist angle α. Three types of
spanwise variations are considered as levels: no variation, linear increase from root to tip, and vice versa.
Examined responses are CL and CD of the wing. Only to account for positive responses in aerodynamic
performance (increase in CL and decrease in CD), following two functions are introduced:

F1 = max ( CL - CL0 , 0 ) (4)

F2 = - min ( CD - CD0 , 0 ) (5)

where CL0 and CD0 are those of a wing having a constant airfoil section along the spanwise direction.
Since this is the case of six factors, ten interactions, and three levels, 81 CFD runs are conducted

according to the L81(340) orthogonal array. Then the results are statistically analyzed by F-tests. Figure 4



shows the F values of the examined factors and interactions. The solid and broken lines are critical F values
with 1% and 5% statistical risks, respectively. A factor or an interaction that has F value more than these
critical values is judged effective. While every single factor is effective on both F1 and F2, nothing but xcxt

and ycyt appears effective among the examined interactions. This result is consistent with the fact that xc and
xt, are related to the airfoil thickness while yc and yt are related to the airfoil camber line.

To make use of identified interactions of the design variables,
1) Structured coding is introduced by considering each spanwise distribution of the airfoil parameters and

the twist angle as strings of genes instead of conventional sequential coding where all design variables
are coded as a single string.

2) One-point crossover is applied to each string where the same gene site is selected for each interactive
design parameter sets (xc xt) and (yc yt), at the probability)

))50/,1(min(7.01.0 generationP += (6)
Figure 5 illustrates the proposed structured coding for the present wing shape modeling. The broken lines

in the figure show how one-point crossover is applied to the present structured coding. This crossover
enables that the genes of the identified parameter sets, such as (xc xt) and (yc yt) are exchanged together to
utilize efficiently the effects of the interactions between them.

To validate advantage of the present approach, design optimization is demonstrated using the present EA
and the design results are compared with that of the EA with the sequential coding where one-point
crossover is applied to each spanwise distribution of the design parameters but each crossover gene site is
selected independently as illustrated in Fig. 6. Figure 7 shows the Pareto optimal solutions indicating the
tradeoff between maximization of CL and minimization of CD. Solid and hollow points show the resulting
Pareto fronts obtained from the sequential and structured codings, respectively. This figure indicates that the
present EA with the structured coding have better Pareto solutions in high CL region.

3.2 Wing Design Using the PERSEC
Now, the present approach is applied to wing design using the PERSEC. First, the epistases of the parameter
sets for the PERSEC airfoils are analyzed by FFD. The factors to be examined are rLE, XUP, ZUP, ZXXUP, XLO,
ZLO, ZXXLO, αTE, ZTE and their two-factor interactions on F1 and F2. The wedge angle at the trailing edge and
its interactions are neglected since the wedge angle is primary determined by the structural strength. Also,
interactions of rLEZTE, rLEαTE and rLEZXXLO are disregarded. Consequently, 42 factors are examined. And
FFD is conducted according to the L729(3364) design template. Number of CFD runs required for this
epistasis analysis is reduced from 39 = 19683 (full factorial design) to 36 = 729.
  Figure 8 shows the result of the F-tests. Interactions effective in both CL and CD are illustrated with bold
lines in Fig. 9. Since these figures indicate complicated interactions among the design variables, especially,
ZUP, ZLO, and ZTE, it seems difficult to construct a structured coding for these design variables. Therefore,
new parameters ZC and ZH are introduced instead of ZUP and ZLO as;

ZC = ( ZUP + ZLO ) / 2  (7)

ZH = ( ZUP - ZLO )  (8)

where ZC and ZH correspond to airfoil camber and thickness, respectively. Using these parameters,
interactions are greatly simplified as shown in Fig.10. According to this result, a structured coding for the
spanwise distributions of airfoil parameters is introduced.

The design result obtained by the EA using this structured coding is compared with that obtained by the
EA using the sequential coding. Figure 11 compares Pareto fronts obtained from the sequential coding of the
original PERSEC airfoils and the structured coding using ZC and ZH. Similar to the previous section using
the extended Joukowski airfoils, advantage of the structured coding is observed in high CL region. Compared
with Fig.7, this figure also shows that Pareto front of the PERSEC airfoils is superior to that of the extended
Joukowski airfoils.

4. Conclusion
EAs based on structured coding have been proposed for aerodynamic optimization of wing design. The
coding structure for EA was developed according to the epistasis analyzed by FFD. The present approach
was applied to wing design problems where the wing shape is modeled using the parameter sets defined by
the extended Joukowski airfoils and by the PERSEC airfoils. Aerodynamic optimizations of a transonic



wing demonstrated that the structured coding for EAs is a promising approach to find a global optimum in
practical applications. The design results also confirm that the PERSEC is an accurate technique for
transonic wing shape parameterization. The improved Pareto front is obtained by EA based on the proposed
structured coding using the PERSEC.
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Figure 1. Example of the extended Joukowski
transformation.
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Figure 5. Structured coding for the extended
        Joukowski transformation.
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Figure 6. Sequential coding for the extended
        Joukowski transformation.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05

sequential
structured

C
L

C
D

Figure 7. Comparison of Pareto fronts for
Sequential and structured coding techniques.



0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Factors and interactions

F
CL C D Critical Value(1%) Critical Value(5%)

XLO     XLO          XLO                ZLO ZLO   ZLO ZLO                                ZTE        ZTE ZTE     αTE                      ZUP
 ZLO        ZTE           ZUP                          ZTE  αTE     ZUP  XUP                                                αTE     ZUP  XUP      ZUP                                  XUP

Figure 8. Effectiveness of factors and their interactions for the PERSEC.

rLE

XLO

XUP
ZXXUP

ZXXLO

αTE

ZTE

ZUP

ZLO
Figure 9. Effective interactions of the original
         PERSEC.

rLE

XLO

XUP
ZXXUP

ZXXLO

αTE

ZTE

ZTH

ZC
Figure 10. Effective interactions of the modified
         PERSEC.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05

sequential
structured

C
L

C
D

Figure 11. Comparison of Pareto fronts for sequential
and structured coding techniques.



-0.2

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1

  0%
 30%

74.4%

z/
c

x/c
Figure 12. Wing profiles of the design obtained by the
EA with sequential coding and the extended

Joukowski parameterization.

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

design
ellipse

lo
ad

2y/b
Figure 13. Spanwise load distribution of the design

obtained by the EA with sequential coding
and the extended Joukowski

parameterization.

-1

0

1

0 0.2 0.4 0.6 0.8 1

  0%
 30%

74.7%

C
p

x/c
Figure 14. Cp distribution of the design obtained by
         the EA with sequential coding and the

 extended Joukowski parameterization.

-0.2

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1

0 %
30%

74.4%

z/
c

x/c
Figure 15. Wing profiles of the design obtained by the
EA with structured coding and the extended
         Joukowski parameterization.

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

design
ellipse

lo
ad

2y/b
Figure 16. Spanwise load distribution of the design
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Figure 20. Spanwise load distribution of the design
         obtained by the EA with sequential coding
         and the PERSEC parameterization.
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