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The capability of a proper-orthogonal-decomposition-based data mining approach for 
the analysis of flow field data of Pareto-optimal solutions is demonstrated. This method 
enables a designer to extract design knowledge by examining baseline data and a limited 
number of eigenvectors and orthogonal base vectors. The flow data analyzed herein are the 
pressure field data of the Pareto-optimal solutions of an aerodynamic transonic airfoil shape 
optimization problem. The results of the present study indicate that the proper-orthogonal-
decomposition-based data mining approach is useful for extracting design knowledge from 
the flow field data of the Pareto-optimal solutions. 

Nomenclature 
am(n) = eigenvector of mode m 
c = chord length 
Cd = drag coefficient 
Cl = lift coefficient 
j = index of grid points 
jmax = number of grid points 
m = index of mode 
mmax = number of modes (mmax = nmax) 
n = index of Pareto-optimal solutions 
nmax = number of Pareto-optimal solutions 
p(j,n) = pressure of Pareto-optimal solution n at grid point j 
q(j,n) = data of Pareto-optimal solution n at grid point j to be analyzed by POD  
ql/d_ave(j) = data of maximum-lift-to-drag-ratio design at grid point j  
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q’(j,n) = fluctuation of data q of Pareto-optimal solution n at grid point j 
q’base(j,m) = orthogonal base vector of mode m 
Sm1,m2 = covariance of q’base of mode m1 and mode m2 
x = coordinate in the chordwise direction 
y = coordinate in the normal direction 

I. Introduction 
ULTIOBJECTIVE design exploration1 (MODE) is a framework to extract essential knowledge of a 
multiobjective design optimization problem, such as tradeoff information between contradicting objectives 

and the effect of each design parameter on the objectives. In the framework of MODE, Pareto-optimal solutions are 
obtained by multiobjective optimization using, for example, a multiobjective evolutionary algorithm2, and important 
design knowledge is then extracted by analyzing objective function and design parameter values of the obtained 
Pareto-optimal solutions using data mining approaches, such as the self-organizing map3 (SOM) and analysis of 
variance4. Recently, MODE framework has been applied to a wide variety of design optimization problems, 
including multidisciplinary design of a regional-jet wing5,6, aerodynamic design of the fly-back booster of a reusable 
launch vehicle7, aerodynamic design of a flapping airfoil8, and aerodynamic design of a turbine blade for a rocket 
engine9. 

However, data mining of objective function and design parameter values is not sufficient. One reason is that the 
design knowledge of a shape design optimization problem that can be obtained depends on how the shape is 
parameterized. For example, if an airfoil shape is represented by B-Spline curves and the coordinates of the 
corresponding control points are considered to be design parameters, it is difficult to obtain design knowledge 
related to leading edge radius, thickness distribution, and so on. Another reason is that data mining of the objective 
function and design parameter values does not lead to an understanding of the physics behind the design problem. 
For example, if only the design parameters of a transonic airfoil were analyzed, it would not be possible to clarify 
the relation between shock wave generation and aerodynamic characteristics. 

In Reference 10, Oyama et al. proposed a new approach based on the proper orthogonal decomposition (POD) 
for data mining of shape and flow data of Pareto-optimal solutions. In their method, shape data or flow data of the 
obtained Pareto-optimal solutions are decomposed into baseline data and eigenvectors and orthogonal base vectors 
of principal modes with POD. This enables a designer to extract design knowledge by examining baseline data and a 
limited number of eigenvectors and orthogonal base vectors. They demonstrated the capability of the POD-based 
method for data mining of shape data and one-dimensional flow data (surface pressure data) of the Pareto-optimal 
solutions of an aerodynamic transonic airfoil design optimization problem. 

The objective of the present study is to demonstrate the capability of the POD-based method for data mining of 
two-dimensional flow field data of the Pareto-optimal solutions. In the present paper, the POD-based method is 
applied to the pressure field data of the Pareto-optimal solutions of an aerodynamic transonic airfoil design 
optimization problem. First, the results of data mining of shape data of the Pareto-optimal solutions are presented. 
Then, data mining of the flow field data of the Pareto-optimal solutions is discussed. 

 
 

II. Pareto-optimal Solutions 
The Pareto-optimal solutions of the following design optimization problem are analyzed.  

 
 Objective functions: lift coefficient (maximization) 
       drag coefficient (minimization) 
 Constraints:   lift coefficient must be greater than 0 
       maximum thickness must be greater than 0.10 chord length 
 Design parameters: coordinates of six control points of the B-Spline curves representing an airfoil shape  
       (Fig. 1) 
 Flow conditions:  free stream Mach number of 0.8 
       angle of attack of 2 degrees 
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Figure 1. Parameterization of the airfoil shape. The coordinates of six control points of the B-Spline curves 

representing an airfoil shape are considered as design parameters. 
 
The Pareto-optimal solutions are obtained by the 

multiobjective evolutionary algorithm (MOEA) used in 
Reference 8. The present MOEA adopts real number 
coding because the optimization problem considered 
herein is a real number optimization problem. The 
population size is maintained at 64, and the maximum 
number of generations is set to 60. The initial population 
is generated randomly so that the initial population 
covers the entire design space presented in Table 1. The 
fitness of each design candidate is computed according 
to Pareto-ranking, fitness sharing, and Pareto-based 
constraint handling11 based on its objective function and 
constraint function values. Here, Fonseca and Fleming’s 
Pareto-based ranking method12 and the fitness sharing 
method of Goldberg and Richardson13 are used for 
Pareto-ranking, where each individual is assigned a rank 
according to the number of individuals dominating the 
individual. In Pareto-based constraint handling, the rank 
of feasible designs is determined by the Pareto-ranking based on the objective function values, whereas the rank of 
infeasible designs is determined by the Pareto-ranking based on the constraint function values. The parents of the 
new generation are selected through roulette selection14 from the best 64 individuals among the present generation 
and the best 64 individuals in the previous generation. A new generation is reproduced through crossover and 
mutation operators. The term “crossover” refers to an operator that combines the genotype of the selected parents 
and produces new individuals with the intent of improving the fitness value of the next generation. Here, the blended 
crossover15, the value of α of which is 0.5, is used for crossover between the selected solutions. Mutation is applied 
to the design parameters of the new generation to maintain diversity. Here, the probability of mutation occurring is 
20%, which adds a random disturbance to the corresponding gene of up to 10% of the given range of each design 
parameter. The capability of the present MOEA to find quasi-optimal solutions has been well validated16,17. 

The lift and drag coefficients of each design candidate are evaluated using a two-dimensional Reynolds-averaged 
Navier-Stokes solver. This code employs total variation diminishing type upwind differencing18, the lower-upper 
symmetric Gauss-Seidel scheme19, the turbulence model of Baldwin and Lomax20, and the multigrid method21. 

All of the design candidates and Pareto-optimal solutions are plotted in Fig. 2. The number of Pareto-optimal 
solutions obtained is 85. A strong tradeoff between lift maximization and drag minimization is observed. The static 
pressure distributions around the maximum-lift, maximum-lift-to-drag-ratio, and minimum-drag airfoils are also 
shown in the figure. Figure 3 compares the shapes and surface pressure distributions of the above three designs. 

Table 1. Search range of each design parameter 

Design parameter lower bound upper bound
x1 0.66 0.99
x2 0.33 0.66
x3 0.01 0.33
x4 0.01 0.33
x5 0.33 0.66
x6 0.66 0.99
y1 -0.1 0.10
y2 -0.1 0.10
y3 -0.1 0.10
y4 0.0 0.20
y5 0.0 0.20
y6 0.0 0.20
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These figures indicate that the minimum-drag design avoids the generation of strong shock waves, whereas the 
maximum-lift design generates a strong and large negative pressure region. These figures also show that the 
maximum-lift-to-drag-ratio design has a shape that is similar to supercritical airfoils. These facts indicate that the 
obtained Pareto-optimal solutions are good approximations of the true Pareto-optimal solutions. 
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Figure 2. Distribution of the Pareto-optimal solutions and other design candidates with the pressure 

distribution around the minimum-drag, maximum-lift-to-drag-ratio, and maximum-lift airfoils. 
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Figure 3. Shape and surface pressure distributions of the minimum-drag, maximum-lift-to-drag-ratio, and 

maximum-lift airfoils.  
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III. Data Mining of Pareto-Optimal Solutions Using Proper Orthogonal Decomposition 
In the present study, the shape and pressure field data of Pareto-optimal airfoils are analyzed using the snapshot 

POD proposed by Sirovich22. The Pareto-optimal solutions are numbered from the minimum-drag design to the 
maximum-lift design, as shown in Fig. 4. For data mining of the shape data, the y coordinates defined on all grid 
points around the airfoil are analyzed, and the pressure defined at all grid points is analyzed for the pressure field 
analysis. The number of grid points around the airfoil is 137, and total number of grid points is 9,849 (201 
(chordwise) x 49 (normal)). 

 

n=85

n=1

Dominated solutions
Non-dominated solutions

C
d

C
l  

Figure 4. Index of the Pareto-optimal solutions. For the minimum-drag design, n = 1;  
for the maximum-lift design, n = nmax = 85. 

 
In the original snapshot POD, the data to be analyzed are decomposed into the mean vector and the fluctuation 

vector from the mean vector to minimize the error of the reconstructed flow field with a certain number of modes. 
However, for the analysis of Pareto-optimal solutions, the fluctuation from the mean shape or flow field is not 
intuitive. Thus, it is reasonable to analyze the fluctuation from a single representative design, for example, the 
median design. Here, the fluctuation from the maximum-lift-to-drag-ratio design is analyzed. Analysis of the 
fluctuation from the maximum-lift-to-drag-ratio design had minimal impact on the accuracy of the reconstruction for 
the present data. The data of the Pareto-optimal solutions are decomposed into the data of the maximum-lift-to-drag-
ratio design and fluctuation data as follows: 
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The fluctuation vector is then expressed by the linear sum of normalized eigenvectors and orthogonal base vectors as 
follows: 
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where each eigenvector is determined so that the energy defined by Eq. (3) is maximized as follows: 

),(
max

1

2 mjq
j

j
base∑

=

′  , m = 1, 2, …, mmax.    (3) 

The eigenvectors that maximize the energy defined by Eq. (3) can be obtained by solving the eigenvalue problem of 
the following covariance matrix: 
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IV. Data Mining of Airfoil Shape Using POD 
First, the airfoil shape data of the Pareto-optimal 

solutions are analyzed. The shape data analyzed here are 
the y coordinates defined on all grid points on the airfoil 
shape. The energy ratios of 10 principal orthogonal base 
vectors (principal POD modes) to the total energy are 
shown in Fig. 5. The first mode is dominant (more than 
83%), and the first two modes represent more than 94% 
of the total energy. 

Figure 6 shows the components of the eigenvectors 
of the first four modes with respect to the index of the 
non-dominated solutions n (left) and the lift coefficient 
Cl(n) (right), respectively. This figure indicates that the 
obtained non-dominated airfoil shapes are categorized 
into three groups: low-drag designs (1 ≤ n ≤ 39), high-
lift-to-drag-ratio designs (40 ≤ n ≤ 52), and high-lift 
designs (53 ≤ n ≤ 85). As for the low-drag designs, the 
second mode is dominant as the eigenvector of the first mode is approximately zero. Among the high-lift-to-drag-
ratio designs, the airfoil shape does not change much. Among the high-lift designs, the first mode is dominant 
because the eigenvector of the second mode is approximately zero. 
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Figure 5. Energy ratio of the top 10 principal modes 
of the airfoil shape.  
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Figure 7 presents the maximum-lift-to-drag airfoil shape and orthogonal base vectors of the first four modes. 
This figure indicates that the first mode contributes primarily to the most part of the lower surface change. The base 
vector of the first mode also indicates that thickness near the leading edge should be increased as the lower surface 
moves upward. This is due to the constraint on the maximum thickness imposed on the design optimization problem. 
The base vector of the second mode indicates that the second mode contributes primarily to the camber near the 
trailing edge. Recalling the shapes of the Pareto-optimal solutions are represented by equations (1) and (2), Figures 6 
and 7 indicate that the Pareto-optimal low-drag designs increase lift by changing the camber near the trailing edge, 
while the other parts of the airfoil shape are approximately fixed. For the high-lift designs, lift is increased by 
moving the lower surface upward without significant changing the trailing edge angle. This movement of the lower 
surface corresponds to an increase in camber. The thickness near the leading edge is increased as the lower surface 
moves upward in order to satisfy the constraint applied to the airfoil maximum thickness near the leading edge. 
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Figure 6. Eigenvectors of the first four modes of the airfoil shape with respect to n (left) and Cl(n) (right).  
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V.  Data Mining of Pressure Field Distribution Using POD 
To demonstrate the capability of the POD-based data mining method for the analysis of the flow field data, the 

pressure field data defined on all grid points of the Pareto-optimal airfoil shapes are analyzed. The energy ratios of 
the 10 principal orthogonal base vectors are presented in Fig. 8. The first mode is dominant (more than 79%) and the 
first two modes represent more than 92% of the total energy. These results are qualitatively the same as the airfoil 
shape data mining results. 
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Figure 8. Energy ratio of the top 10 principal modes of the pressure field distribution.  

 
Figure 9 plots the components of the eigenvector of the first four modes with respect to the index of the Pareto-

optimal solutions (left) and the lift coefficient (right). This figure indicates that the pressure field of the Pareto-
optimal solutions can be categorized into three groups as the result of the shape data mining, namely, low-drag 
designs (1 ≤ n ≤ 39), high-lift-to-drag-ratio designs (40 ≤ n ≤ 52), and high-lift designs (53 ≤ n ≤ 85). Among the 
low-drag designs, the components of the first and second modes increase monotonically to zero as n or Cl(n) 
increases. Among the high-lift-to-drag-ratio designs, the first mode increases monotonically as n or Cl(n) increases, 
whereas the second mode is approximately zero. Among the high-lift designs, the first mode increases 
monotonically as n or Cl(n) increases, whereas the second mode decreases monotonically as n or Cl(n) increases. In 
this figure, a large jump in the components of the eigenvectors is also observed between n = 52 and n = 53. This 
jump indicates a significant change in the flow field between the high-lift-to-drag-ratio designs and high-lift designs.  
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Figure 9. Eigenvectors of the first four modes of the pressure field distribution. 
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The orthogonal base vectors of the first and second modes are shown in Fig. 10. These vectors indicate that the 

major changes among the pressure fields of the Pareto-optimal solutions are 1) on the lower surface side near the 
trailing edge (region 1), 2) on the lower surface side near the leading edge (region 2), and 3) on the upper surface 
(region 3). These vectors also indicate that the pressure on the lower surface side near the leading and trailing edges 
decreases as the pressure on the upper surface side decreases. 
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Figure 10. Orthogonal base vectors of the first and second modes of the pressure field.  

 
Recalling that the pressure fields of the Pareto-optimal solutions are represented by Eqs. (1) and (2) and that the 

first and second modes are dominant (more than 92%), the eigenvectors (Fig. 9) and base vectors (Fig. 10) of the 
first and second modes and the pressure field of the maximum-lift-to-drag-ratio design (Fig. 11) provide the 
following observations: 

1) In region 1, the second mode is dominant because the base vector of the first mode is approximately zero. 
Since the base vector of the second mode in region 1 is positive, the eigenvector of the second mode 
indicates that the high-lift-to-drag-ratio designs have the highest pressure near the trailing edge on the 
lower surface and that the pressure in region 1 increases monotonically as n (or lift) increases among the 
low-drag designs. 

2) In region 2, the base vector of the first mode is negative, whereas that of the second mode is positive. In 
addition, the absolute value of the second mode is approximately half that of the first mode. Among the 
low-drag designs, the eigenvectors of the first and second modes increases monotonically as n (or lift) 
increases, and the absolute value of the second mode is approximately double that of the first mode, 
which indicates that the pressure field in region 2 does not change much among the low-drag designs 
because the first and second modes cancel each other. Among the high-lift-to-drag-ratio designs, the 
eigenvector of the first mode increases monotonically, whereas that of the second mode is approximately 
zero, which indicates that pressure in this region decreases as n (or lift) increases. Among the high-lift 
designs, the pressure in this region decreases drastically as n (or lift) increases. 

3) In region 3, as in region 2, the pressure field does not change much among the low-drag designs because 
the first and second modes (the first and second terms of the right-hand side of Eq. (2)) approximately 
cancel each other. Among the high-lift-to-drag-ratio designs and high-lift designs, the pressure in region 3 
increases as n (or lift) increases. The jump in the components of the eigenvectors of the first and second 
modes is due to strong shock wave generation on the upper surface. 
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Figure 11 Pressure field of the maximum-lift-to-drag-ratio design.  

VI. Conclusions 
The capability of the proper-orthogonal-decomposition-based data mining approach for the analysis of the flow 

field data of the Pareto-optimal solutions was demonstrated. This method enables a designer to extract design 
knowledge by examining baseline data and a limited number of eigenvectors and orthogonal base vectors. The flow 
data analyzed here were the pressure field data of the Pareto-optimal solutions of an aerodynamic transonic airfoil 
shape optimization problem.  

The results of the airfoil shape data mining and the pressure field data mining revealed that the Pareto-optimal 
solutions of the aerodynamic transonic airfoil shape optimization problem can be categorized into three groups: low-
drag designs, high-lift-to-drag-ratio designs, and high-lift designs. For the low-drag designs, an increase in trailing 
edge camber contributes primarily to the pressure increase on the lower surface near the trailing edge, which leads to 
an increase in lift. Among the high-lift-to-drag-ratio designs, the changes in the airfoil shape and the pressure field 
are moderate. In the high-lift designs, the camber increases in order to decrease the pressure on the upper surface 
and increase lift. Interestingly, in these designs, the camber is increased by moving the lower surface upward, while 
the upper surface does not change much. In the high-lift designs, the airfoil thickness near the leading edge also 
increases as the lift increases to satisfy the given constraint on the maximum thickness near the leading edge, which 
results in a pressure decrease on the lower surface. 

The present study reveals that the proper-orthogonal-decomposition-based data mining approach is useful for 
extracting design knowledge from shape data and flow field data of Pareto-optimal solutions. 
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